
IE URL Lock Team: Dongwhan Kim, Annie Zhao, Steven Lawrance Nov 13th Report

 1

Our team presently knows which problems to solve and how to get there. Free and open access to the

Internet permits users to access a theoretically unbounded amount of information, though in some

settings, such freedom conflicts with acceptable use policies as well as parents’ child-raising strategies.

By restricting information access either to either a limited set of allowed sites or by blocking out only

specific sites, information technology administrators and parents can control which web sites are

permitted and which ones are not.

To fulfill the needs of this market for information technology administrators and parents, this project

will extend the Internet Explorer (IE) URL Lock browser helper object (BHO). The improvements will

increase its configurability beyond those who know Perl-compatible regular expressions and expand its

browser coverage to include Mozilla Firefox. Other improvements will support the needs of the new

configuration user interface as well as a new optional mode that permits all web sites while blocking

only those that match a block list. The existing IE URL Lock BHO presently will only block all web

sites except for those that are allowed. With these improvements, more information technology

administrators and parents can effectively use

the IE URL Lock to control web site access.

To plan our project, a high-level runtime

architectural view was created, as depicted in

Figure 1.

The configuration user interface follows a

model-view-controller pattern with the

controller and the view in the configuration

user interface architectural component and the

model in the configuration model. The view

and controller are split into separate XML user

interface language (XUL) and JavaScript files,

respectively, to separate the user interface

definitions from the user interface implementations. In the Mozilla Firefox version of the extension, the

configuration user interface can run natively. The Internet Explorer version will launch the

configuration user interface using Mozilla’s XUL Runner. Both will use the same configuration model.

Both Internet Explorer and Mozilla Firefox will instantiate their respective versions of the locking

engine, which is either a browser helper object or an extension. The locking engine will use the same

configuration model that the configuration user interface uses to load the blocking configuration. Due

to technical reasons, the Internet Explorer version of the locking engine will use its own read-only

subset of the configuration model in C++ rather than the JavaScript version that we will build, though

they will both reference the same Windows registry keys.

The configuration model will be able to read bookmarks and histories from both Internet Explorer and

Mozilla Firefox, possibly including those from all users on the system. That data will be used by the

user interface. Because the configuration model can load and save the IE URL Lock configurations for

multiple users on the system, it will mount and unmount user registry hive files to modify and lock

down other users’ IE URL Lock configurations. This permits multiple-user configurations without

requiring Microsoft’s ActiveDirectory, which most home users do not use.

Configuration User

Interface Locking Engine

Configuration Model

Windows Registry

System

Registry

User

Registries

IE Firefox

Bookmarks Histories

Figure 1: Runtime view of improved IE URL Lock

 Component

Connector

IE URL Lock Team: Dongwhan Kim, Annie Zhao, Steven Lawrance Nov 13th Report

 2

To plan our project, our runtime architectural components were broken down into feature sets that were

based on the functionalities that our group collaborated on. Using historical data from both the existing

IE URL Lock C++ code and Steven Lawrance’s Project 4 JavaScript files, estimates for lines of code

(LOC) were devised for each feature, starting with each part that forms a feature. As this time, there are

6 medium, 1 huge, 1 large, and 1 small features with 4,600 estimated lines of code, which puts the

LOC/person at about 1,530. The huge feature can be split up if needed due to its size. After analyzing

the estimates, features were assigned to team members based on workload, skills, and interests. The

current work breakdown is not finalized, though the team can proceed with it.

As a next step, our team will create the interfaces that sit at each connector in our runtime architectural

view. After these interfaces are defined, a skeleton implementation can be created that the team can

work from, enabling parallelism in our development process and, eventually, reducing the software

integration time. Our team will consider whether or not it makes sense to employ other software

engineering methodologies such as unit tests and integration tests.

The feature table appears below, which lists each of the nine features as well as the parts that compose

each feature. The estimated LOC counts as well as feature sizes also appear in the table. The current

owner of each feature appears below the each feature’s name.

Feature / Person Part Est LOC Size

1. Home user / easy

interface

XUL: The "main/home" and "settings" tabs 330

Dongwhan Kim JavaScript: Controller code for the XUL, which updates

the UI when settings change, loads settings using the

underlying configuration reader, writes settings using the

underlying configuration writer, populates UI lists such as

user names and history/bookmark lists, and prevents

editing if the user is not an administrator (saving won't

work anyway as Windows enforces that security)

1200

 Feature Total 1530 Huge

2. Configuration

reader and writer

(JavaScript)

Configuration reader, which reads in and parses the

configuration from the registry, both system-wide and per-

user

180

Steven Lawrance Configuration writer, which writes the configuration to the

registry, both system-wide and per-user

180

 Feature Total 360 Medium

3. Configuration

native library

(XPCOM using C

or C++)

User registry loader and unloader, which might require a

small XPCOM object to call Win32 API functions

50

Steven Lawrance Data source of user IDs, names, local administrator group

membership (true or false), and their registry files

70

IE URL Lock Team: Dongwhan Kim, Annie Zhao, Steven Lawrance Nov 13th Report

 3

 Flag that indicates whether or not the current user has

administrative rights to the IE URL Lock registry (read-

only)

30

 Lock down the registry setting that permits users to disable

the IE URL Lock so that they cannot do that, but do that

only to non-administrative users

50

 Interface to the native Perl-compatible regular expression

library (PCRE) for maximum regular expression

compatibility with what IE URL Lock uses (versus

Firefox's built-in RegExp object, which differs from

PCRE)

50

 History data source for Internet Explorer history from all

users using IEnumSTATURL via COM (this can be part of

the XPCOM object as it's on the C++ side of things)

100

 XPCOM overhead code 150

 Feature total 500 Medium

4. Bookmarks and

history data sources

(JavaScript)

Bookmarks data source for Internet Explorer favorites

from all users, which involves reading text files and

retrieving the "URL=" lines

130

Annie Zhao Bookmarks data source for Firefox bookmarks from all

users, which involves reading anchor tags from the

bookmarks.html file of each user's default profile

150

 History data source for Firefox history, which can be done

in JavaScript using code using a Mork file format parser.

more information exists at

https://bugzilla.mozilla.org/show_bug.cgi?id=241438. The

easiest implementation can skip the details of the format

and only consider parenthesis groups that begin with

"(*=http", where * can be any series of numbers and

letters. Regular expressions can help. Time information

isn't needed, so the Mork parser can be simple. Other Mork

information exists at

http://philwilson.org/blog/2005/01/how-to-export-firefoxs-

history-to-text.html

130

 Feature Total 410 Medium

5. Core engine for

IE URL Lock (C++)

Add an "enable all web browsing by default" mode 30

Annie Zhao Add the ability to optionally show a dialog box when

blocked instead of a web page

30

 Feature Total 60 Small

6. User interface

integration for IE

URL Lock (C++)

Add a right-click menu to disabled links that can open the

configuration window with the clicked-on link in the Add

Location input box

100

IE URL Lock Team: Dongwhan Kim, Annie Zhao, Steven Lawrance Nov 13th Report

 4

Steven Lawrance Change the appearance of disabled links (should the cursor

be different? Should the underlining be removed? I'm not

sure..)

200

 Add a menu item to Tools that launches our configuration

editor via XUL Runner

70

 Feature Total 370 Medium

7. Core engine for

the Firefox version

(JavaScript)

Write the blocking code as a Firefox extension, which

reads in its configuration from the registry and makes

blocking decisions using the Perl-compatible regular

expression library (PCRE)

400

Steven Lawrance Feature Total 400 Medium

8. User interface

integration for the

Firefox version

(JavaScript)

Add a right-click menu to disabled links that can open the

configuration window with the clicked-on link in the Add

Location input box

70

Annie Zhao Change the appearance of disabled links (should the cursor

be different? Should the underlining be removed? I'm not

sure..)

200

 Launch the configuration window using either a menu item

in Tools or through the "Options" button in the

"Extensions" window

70

 Feature Total 340 Medium

9. Expert user

interface

XUL: The "main/expert" tab 230

Annie Zhao JavaScript: Controller code for the XUL 400

 Feature Total 630 Large

The following table lists the work breakdown totals by team member. Note that the configuration user

interface controller code might get split into multiple tasks.

Person Features LOC Sizes

Dongwhan Kim 1 1530 1 Huge

Annie Zhao 4, 5, 8, 9 1440 1 Small, 2 Medium, 1 Large

Steven Lawrance 2, 3, 6, 7 1630 4 Medium

With these features and task assignments, our team plans to achieve our goal of enabling parents and

information technology professionals to easily control web site access for their users and do so within

our project’s time constraints.

